Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4,6,8,10,12-Hexabenzyl-5-(nitromethylene)-2,4,6,8,10,12-hexaazatricyclo[7.3.0.0 ${ }^{3,7}$]dodecane

Richard D. Gilardi ${ }^{\text {a* }}$ and Ray J. Butcher ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratory for the Structure of Matter, Naval Research Laboratory, Washington,
DC 20375-5341, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Howard University, 525 College Street, NW, Washington DC 20059, USA

Correspondence e-mail: gilardi@nrl.navy.mil

Key indicators
Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.059$
$w R$ factor $=0.116$
Data-to-parameter ratio $=15.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{49} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{2}$, is a crowded tricyclic heterocycle substituted with six benzyl groups. It is related to the hexaazaisowurtzitane family of high-density, highenergy polycyclic cage compounds. The central six-membered ring adopts a boat conformation which minimizes the steric repulsion of the six benzyl substituents. The nitromethylene substituent on the methylene C atom of one of the fivemembered rings has a considerable influence on the metric parameters of that ring. From the bond distances in the nitro group and the five-membered ring it appears that the molecule is zwitterionic, rather than neutral, in the vicinity of the nitro group.

Comment

The title compound, (I), is a benzyl substituted 'open' tricyclic hexaazadodecane. By open, it is meant that the fused ring system can be drawn as a flat system, as opposed to a 'caged' ring system, such as an adamantane or cubane. It is related to the hexaazaisowurtzitane family of high-density high-energy compounds (Batsanov et al., 1994; Crampton et al., 1993; Nielsen et al., 1990, 1998; Qiu et al., 1998), which are caged tetracyclohexaazadodecane compounds. The present compound lacks one $\mathrm{C}-\mathrm{C}$ bond that closes the cage and thus is open. Despite this significant difference, there are similarities; the central six-membered rings of the title molecule and of the hexaazaisowurtzitanes all adopt a boat conformation. As a result, both types of molecule have a cup-like cavity, and both 'open' and 'caged' systems are far from flat.

(I)

(II)

Received 26 November 2001
Accepted 2 January 2002
Online 11 January 2002

Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level; all H atoms except that of the nitromethylene group have been omitted for clarity.
donated by atoms N4 and N6 to increase the bond order of the $\mathrm{C}-\mathrm{N}$ bonds $\mathrm{N} 4-\mathrm{C} 5$ [1.353 (2) \AA] and C5-N6 [1.344 (2) \AA], which are shorter than typically found for a $\mathrm{C}-\mathrm{N}$ single bond [1.469 (10) \AA; Allen et al., 1991]. As shown in form (II), the exocyclic bond, C5-C51, which is an olefin bond in form (I), is lengthened [to a distance of 1.420 (3) \AA] by withdrawal of charge by the strongly electron-withdrawing nitro group. Also, the $\mathrm{C}-\mathrm{NO}_{2}$ bond length is 1.359 (2) \AA, which is shorter than typically found; e.g. a search of the Cambridge Structural Database (Allen et al., 1991) gave 2106 observations of nitro groups on benzene rings with no ortho substituents and with R <0.05, and the mean $\mathrm{C}-\mathrm{NO}_{2}$ bond length was 1.467 (2) \AA. The N5-O5A and N5-O5B distances are longer than typically found, at 1.274 (2) and 1.258 (2) \AA, while the O5A$\mathrm{N} 5-\mathrm{O} 5 B$ bond angle is $120.18(15)^{\circ}$, which is much smaller than typically found [compare with values of 1.219 (1) \AA and $123.8(1)^{\circ}$ from the aforementioned database search]. The five-membered ring, comprised of atoms C3, N4, C5, N6, and C 7 , is planar (mean deviation from a least-squares plane is $0.02 \AA$), while the other five-membered ring is non-planar, as is expected for a fully saturated five-membered ring. These changes are all consistent with the bonding seen in the charged form, (II).

Experimental

Crystals of the title compound were supplied by Dr Michael Chaykovsky, Naval Surface Warfare Center - White Oak, Silver Spring, MD. Crystal and reflection data were obtained using standard procedures (Butcher et al., 1995).

Figure 2
Packing diagram of the title compound. Dashed lines mark weak (2.44< $\mathrm{CH} \cdots \mathrm{O}<2.56 \AA$) hydrogen bonds to nitro-O atoms.

Crystal data

$\mathrm{C}_{49} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{2}$
$M_{r}=767.95$
Triclinic, $P \overline{1}$
Triclinic, $P 1$
$a=10.4199$ (15) \AA
$b=11.7594$ (17) \AA
$c=17.288$ (3) A
$\alpha=71.449(2)^{\circ}$
$\beta=86.811(3)^{\circ}$
$\gamma=86.953(3)^{\circ}$
$V=2003.7(5) \AA^{3}$

Data collection

Bruker CCD area-detector	8141 independent reflections
diffractometer	5974 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.039$
Absorption correction: by integra-	$\theta_{\max }=26.4^{\circ}$
tion (Wuensch \& Prewitt, 1965)	$h=-13 \rightarrow 12$
$T_{\min }=0.976, T_{\max }=0.992$	$k=-14 \rightarrow 14$
13583 measured reflections	$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.116$
$S=1.06$
8141 reflections
524 parameters
H-atom parameters constrained
$Z=2$
$D_{x}=1.273 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7939 reflections
$\theta=2.3-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=93$ (2) K
Slab, colorless
$0.52 \times 0.26 \times 0.10 \mathrm{~mm}$

8141 independent reflections
5974 reflections with $I>2 \sigma(I)$
$\theta_{\text {int }}=26.4^{\circ}$
$h=-13 \rightarrow 12$
$\stackrel{14}{ } \rightarrow 14$
$T_{\text {min }}=0.976, T_{\text {max }}=0.992$
$l=-21 \rightarrow 21$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0381 P)^{2}\right. \\
&+0.7713 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXTL
Extinction coefficient: 0.0031 (7)

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

N4-C5	$1.353(2)$	C51-N5	$1.359(2)$
C5-N6	$1.344(2)$	N5-O5B	$1.258(2)$
C5-C51	$1.420(3)$	N5-O5A	$1.2738(19)$
O5B-N5-O5A	$120.18(15)$		

H atoms were found in difference maps; all H atoms were constrained in the refinement to ideal positions, with phenyl $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and angles as close to 120° as possible, and with $s p^{3} \mathrm{C}-\mathrm{H}$ distances of 0.99 or $1.00 \AA$, and angles as close to 109.5° as possible. Each was assigned a $U_{\text {iso }}$ equal to $1.2 U_{\text {eq }}$ of the neighboring C atom.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors wish to acknowledge the financial support from the Office of Naval Research, Mechanics Division. RJB wishes to acknowledge the ASEE/Navy Summer Faculty Research Program for support during the summer of 2001.

References

Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Batsanov, A., Cole, J. C., Crampton, M. R., Hamid, J., Howard, J. A. K., Millar, R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 421-424.

Bruker (2001). SMART (Version 5.624) and SAINT (Version 6.04) using the Windows NT system. Bruker AXS Inc., Madison, Wisconsin, USA.
Butcher, R. J., Bashir-Hashemi, A. \& Gilardi, R. D. (1995). J. Chem. Crystallogr. 25, 661-670.
Crampton, M. R., Hamid, J., Millar, R. \& Ferguson, G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 923-929.
Nielsen, A. T., Chafin, A. P., Christian, S. L., Moore, D. W., Nadler, M. P., Nissan, R. A., Vanderah, D. J., Gilardi, R. D., George, C. F. \& FlippenAnderson, J. L. (1998). Tetrahedron, 54, 11793-11812.
Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F. \& Flippen-Anderson, J. (1990). J. Org. Chem. 55, 1459-1466.
Qiu, W. G., Chen, S. S. \& Yu, Y. Z. (1998). J. Chem. Crystallogr. 28, 593-596. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Wuensch, B. \& Prewitt, C. (1965). Z. Kristallogr. 122, 24-59.

